

MovieQA task: given a question, 5 answer choices, and a movie context (encoded with videos, scripts, and subtitles), select the correct answer.

Prior works: Use deep networks to incorporate information from videos and subtitles to do this task, but fail to utilize them.

Our approach: Much simpler model that achieves state of the art performance, without using any video or subtitle context. We attribute this to linguistic bias in the data.

WikiWords Embedding Model

WikiWords is simple – it selects the answer closest to the question in word2vec space. It does not use any movie context in the form of clips or subtitles. Importantly, it uses word2vec trained on Wikipedia movie plots (movie summaries).

Are we asking the right questions in MovieQA?

Bhavan Jasani, Rohit Girdhar and Deva Ramanan

Results - State of the art on 4 out of 5 MovieQA categories

Leader board submission	Videos + Subtitles			
WikiWords model	46.98			
New method to optimize all				
MEM network (anonymous)	45.31			
Multimodal dual attention memory [2]	41.41			
Compared to best published results, WikiWord				
improves accuracy by 5% for video + subtitle				
category, 5% for subtitle, 15% for DVS and 6%				
higher for scripts.				

Leader board submission	Subtitles	
WikiWords model	44.01	
Speaker Naming in Movies [3]	39.36	
Leader board submission	DVS	
WikiWords model	49.65	
MovieQA benchmark [4]	35.09	
Leader board submission	Scripts	
WikiWords model	45.49	
Read Write Mem. Net [5]	39.36	

Ablation Study – Training data for word2vec

Using a generic word2vec, like the one trained on Google news, results in chance level accuracy. Default MovieQA word2vec trained on a huge pool of movie plots gives intermediate accuracy. Our WikiWord embedding, trained on a subset of movie plots (which are part of the MovieQA dataset), performs best.

Ablation Study – t-SNE visualization of word2vec

t-SNE visualization of words from 6 different movies (each movie corresponds to a different color). WikiWord embedding has separate clusters for each movie, hence it preserves movie semantics, while Google News loses movie semantics.

Mechanical Turkers generated QA pairs by looking at Wikipedia plots, ignoring other sources of information like videos and subtitles. Pairs of questions and the correct answer tend to contain common keywords from these movie plots. This suggests that their WikiWord embeddings will tend to lie near each other. In the given example, the words "Forrest" and "Chinese" lie close to "Ping Pong" in WikiWord embeddings.

Ability to generate better benchmark

WikiWord

embedding

49.88

99.41

25.68

Type

Original dataset Only biased Only unbiased

WikiWord naturally allows us to find the subset of the dataset which is unbiased. We consider the QA's which WikiWord is unable to answer as unbiased. We show QA only models perform chance level on this split, indicating need for information from videos and subtitles. Also, our experiments on TVQA dataset shows the data used for training word embedding doesn't have any impact, indicating it is free from such bias.

References:

Experiments on TVQA dataset

	Model	Word embedding	Val accuracy
ne	WikiWord embedding	Google News	32.76
		TVQA subtitles	32.66
	TVQA baseline [6]	Random weights	39.61
		Wikipedia articles	40.18
		TVQA subtitles	39.65

- [1] B. Wang, Y. Xu, Y. Han, and R. Hong, Movie question answering: remembering the textual cues for layered visual contents. In AAAI, 2018. [2] K.-M. Kim, S.-H. Choi, J.-H. Kim, and B.-T. Zhang, Multimodal dual attention memory for video story question answering. In ECCV, 2018 [3] M. Azab, M. Wang, M. Smith, N. Kojima, J. Deng, and R. Mihalcea, Speaker naming in movies. *arXiv preprint arXiv:1809.08761*, 2018
- [4] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and S. Fidler, Movieqa: Understanding stories in movies through question-answering.
- In CVPR, 2016.
- [5] S. Na, S. Lee, J. Kim, and G. Kim, A read-write memory network for movie story understanding. In CVPR, 2017

TVQA baseli

model

32.50

47.80

22.50

[6] J. Lei, L. Yu, M. Bansal, and T. Berg, Tvqa: Localized, compositional video question answering. In EMNLP, 2018