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Abstract

Thesis Title : Accelerating Feature Detectors For Real-Time Vision-Based Applications
Supervisor : Asst Prof Lam Siew Kei

Semester : Second Year :2015-16

Name of student : Bhavan Jasani ID No. : 2011B5A3305G

Abstract:

Feature detection is a fundamental step in many real time applications such as visual SLAM, video
tracking and robotic navigation. Harris Corner detector has been demonstrated to be a good feature
detector algorithm, it is one of the most accurate corner detector algorithm and works well for noisy
images. But it is a computationally complex algorithm involving multiple steps which generate
intermediate image data and all these steps are carried out for each and every pixel in the image,
and also the size of intermediate data increases for subsequent steps. The computational complexity
can be a bottle neck for real time implementation on low power embedded vision systems.

This thesis work is on developing hardware - efficient implementation of Harris Corner Detector on
FPGA'’s which can run in real time with significantly lower logic and memory resources. A complete
embedded vision system consisting of camera as the input, FPGA running Harris Corner detector and
a VGA display for displaying the detected corners in real time on the input video stream is
implemented and demonstrated.
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Introduction

What are feature detectors? 11,23

Feature detection is a starting task in many computer vision applications like optical flow
measurement, camera motion estimation, video tracking, panorama stitching, visual SLAM
(simultaneous localization and mapping). Features are the interesting parts in the image which

uniquely define themselves as compared to their neighboring region.

For example in case of motion estimation, features are detected between two consecutive frames
and then the corresponding features between the adjacent frames are matched (as shown in Figure
1) and then the by finding the shift of features in the two frames one can estimate the motion of the
objects in the video or that of the camera which can further be used for stabilizing the video from a

shaking motion of camera.

Figure 1: Feature detection and matching example [1]
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What are good features? i

- .

s b .

Figure 2: Patch matching example image [2]

Consider the Figure 2 shown above, there are six patches shown at the top which are taken from the

image and the aim is to locate these regions exactly in the image.

Consider image patches A and B, they are respectively of sky and building wall, these are flat regions,
they have no intensity variation and so it’s difficult to find their exact location in the image because

many nearby regions in the image look like them.

The image patches C and D are the edges in the building, locating them is much simpler than flat
regions, and one can easily find their approximate location, but it’s difficult to find the exact location
because you can move the patch along the edge of the building and they will match in all those
regions. Only normal to the edge the pixels are different. So edges are better features in comparison

to flat regions but not good enough for exact matching.

The image patches E and F are the corners of the building, one can easily find their exact location in
the image because near corners no matter which direction you move the patches will look different.

So corners are better features in the image as compared to edges and flat regions.
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A corner is like an intersection of two non-parallel edges. An image patch which contains corner will
have lot of pixel intensity variations and so generally it can be uniquely identified in an image and so
a corner serves as a good image feature for feature matching between two images of the same

scene.

Since feature detection is the starting point of many computer vision algorithms, it can be a deciding
factor for the performance of the consecutive steps of the algorithm and so it’s important to have a

good feature detector.

An important criterion for finding the performance of a feature detector algorithm is the
repeatability criteria — which tells the numbers of corresponding features which will be detected in
two or more different images of the same scene but involving slight changes in scale, rotation or

view point. [4]

There are various different feature detectors with varying complexity and performance. Harris
Corner Detector is an important feature detector, it is one of the most accurate corner detection

algorithm and it works well for noisy images.
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Harris Corner Detector

An early attempt for detecting corners was made by Chris Harris and Mike Stephens mentioned in
their 1988 paper titled “A Combined Corner and Edge Detector”[5] which is now called Harris Corner

Detector.

The basic idea of Harris Corner Detector (HCD) as shown in the Figure 3 is to find small patches of
image which generate large variations in pixel intensity when moved around in all directions because

these regions are likely to contain corners.

.J
v
“flat” region: “edge™ “corner’:
no change in no change along significant change
all directions the edge direction in all directions

Figure 3: Comparision of corner, edge and flat region [1]

HCD algorithm takes an image pixel along with its neighborhood to finds whether the image pixel is
an edge, corner or flat region based on the value of Harris measure which is the output of the
algorithm. It relies on the image gradients for detecting corners because a corner will have high
variance in its gradient. Harris corner detector is a commonly used feature detector because it is

invariant to rotation and illumination in images and to a certain extent to change in scale.
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Mathematics of Harris Corner Detector (1267

Consider a grayscale image |, the change in intensity of a small patch in image for the shift (u,v) is

given by:

Ewv) =% wlzy) [Hx+uy+v)—I(ry)P

r

¥ window function  shifted intensity intensity

Where,

e E(uyv ) is the difference in pixel intensities between original window and the window
displaced by (u,v)

e w(x,y) is the window function, it acts like a mask to ensures only a small patch (of the size of
the window) in the image is selected at a time, the commonly used window functions are

show below:

Window function W(X,)) =

1 in window, 0 outside Gaussian

Figure 4: Window function examples [1]

e uisthe window's displacement in the x direction
e visthe window's displacement in the y direction
e I(x,y) is the pixel intensity in the image at location (x,y)

e I(x+u, y+v) is the pixel intensity at the window displaced by (u,v)

For nearly constant patches or flat region the term inside the square brackets will be nearly zero and
for very distinctive patches like those which contain corners the value will be large. So to find
corners we need to look for windows or patches that produce large E(u,v) value, which essentially

means to maximize the terms inside the square brackets:

Maximize Z[f(x tuy +v) — I y))?
xy
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Using first order Taylor series approximation we get:

E(w,v) & ) [1(xy) + ul + vl — I(x,y)?
Xy

This can be simplified as:

E(uv) = ) W+ 2wl +v'I
Yy

This equation can be written in matrix form as:
E(u,v) = [u v E w(x,y) L Ll v
‘ L ) v
EaY

Elu,v) =~ [u. v] M {ﬂ

Where the matrix M is defined as:
_ L Ll
gl ]
Xy

Matrix M above consists of the product of image derivatives in x and y directions which we got
because of Taylor’s series expansion. The matrix elements are weighted by the weights defined in
window function and summed over the region defined by the window function. For Harris Corner

Detector a Gaussian window is used, this smoothens out the noise in image.

The eigenvalues of the matrix M can determine the suitability of a window. A score, R which is
known as Harris measure is calculated for each window, this score determines whether the window

contains a corner, edge or a flat region:

Measure of corner response:

R=det M —k (trace M )’

Where,

. detM = }\1}\2
. trace M =M\ +)\;
« AiandA;are the eigenvalue of matrix M

. k=empirical constant in the range 0.04 — 0.06
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Properties of Harris measure (R) as shown in Figure 5 are:

e |t depends only on the eigenvalues of matrix M

e Itis positive and large in magnitude for a corner, a threshold is defined for classifying a pixel
as a corner

e Itis negative and of large magnitude for an edge

o Magnitude of R is small for a flat region

8

Figure 5: Classification of pixel based on Harris Measure [7]

HCD algorithm summary 1

1) Compute x and y derivatives of the image at every pixel using Sobel operators
Ip =Gl Iy=Ghx1

2) Compute product of derivatives at every image pixel
lyo = Ipdy Iyp = Iy dy Ipy = Iz dy

3) Apply Gaussian smoothing to the products of derivatives at every pixel

h Iz = Gg-.l’ + |r1-2 ;qyg = (:G'-f * _Ii'y_2 ;qI;y = (;g.r £ I.I:,I'
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4) Define the Harris matrix at every image pixel (x,y)

5) Compute the Harris measure (R) at every image pixel using the below formula
R = Det(H) — k(Trace(H))?
Where, k is an empirical constant in the range (0.04 - 0.06)

6) Apply threshold on the values of R, points greater than the threshold are potential corners

7) Apply non maximal suppression around detected potential corners to remove adjacent
falsely detected corners

Figure 6: Example of corners detected using HCD [1]
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Hardware implementation of HCD

System overview

Figure 7: Overall system consisting of camera, FPGA development kit and display

Figure 7 shows the overall system design consisting of the camera as the input device, VGA display

as the output device and FPGA as the interface between these and running Harris Corner Detector.

Intel Atom N2600
4 USB Host Ports VGA Out

HDMI Out

RS-232 Port
Video In

VGA Out

Buzzer Gigabit Ethernet USB Blaster

Mic In

Line In

Line Out

Gigabit Ethernet
Intel Chipset NM10

Ethernet Rom and
Configuration Header

Bios Flash and
Configuration Header

DDR3 SODIMM Slot
SATA Port

SATA Power Port

12V DC Power
Supply Connector

Reset Button

Power ON/OFF
Button

18 Slide Switches
18 Red LEDs

8 Green LEDs 64MB FLASH

7-Segment Displays 4 Push-buttons

Figure 8: Terasic DE2i-150 FPGA development board [8]
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The FPGA development kit used (shown in Figure 8) for the implementation is the Terasic DE2i-150
which consists of Intel Atom Dual Core Processor N2600 and Altera Cyclone IV EP4ACGX150DF31
FPGA both of which are linked together via two high speed PCle lanes. The development kit provides
easy support for connecting and using camera, SDRAM and VGA display which are the essential

components of this system. [8]

Figure 9: Terasic D5M digital camera [9]

The camera is used is the Terasic D5SM shown in Figure 9 which is a 5 Mega Pixel digital camera
compatible with various Terasic FPGA development kits. It provides user controllable resolution of

up to 2592 x 1944 and up to 150 frames per second. [9]

The camera is connected to the GPIO interface of the Cyclone IV FPGA via the 40-pin expansion
header available on the development board. The output of camera is in RGB Bayer Pattern format
and so has to be converted to RGB format by FPGA for further processing. After converting the raw
camera data into RGB we get 30 bits RGB pixel data (10,10,10) at every clock cycle of the camera. For

the implementation purpose the camera was set to output 640 x 480 resolution video. [10]

Output from camera is first decoded by FPGA, then a complete image frame is stored on the SDRAM
available on the development board. Data from SDRAM is then feed to the Harris Corner Detector
which in turn detects the corners and the video from camera with detected corners marked in
yellow are sent to computer monitor connected via the VGA connector which outputs in real time

the video with detected corners.
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Verilog modules for interfacing the Terasic D5SM camera, onboard SDRAM and the VGA display to the
FPGA development board were provided by Terasic [8,9] although some of them had to be slightly
modified because they were meant for older Terasic FPGA development boards, resources available

on [10,11] were helpful for that.

Implementation details 110,11

COMPUTER

VISION

CONTRO-
12c ALGORITHM LLER
CAMERA LOGIC BLOCK

CONFIG

Frame buffer
read side

rame buffer write

CCD SDRAM
CAPTURE AR CONTROLLER

SDRAM
FRAMEBUFFER

Figure 10: Overview of the implemented system

Figure 10 shows the block diagram of the overall system from camera to VGA display with an

overview of FPGA blocks. Following blocks are implemented in FPGA:

1) CCD CAPTURE

This block acts as an interface between the camera and the FPGA. The 12 bit parallel data
coming from camera is captured by the CCD CAPTURE block and it calculates the pixel

coordinates and the frame count.
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2)

3)

I12C CAMERA CONFIG

A clock (MCLK as shown in figure 10) has to be feed to camera which is generated by the PLL
present in FPGA. Camera in turn uses an internal adjustable PLL to generate a “camera
clock” shown as PCLK in figure 10 whose input is the clock from FPGA. The camera outputs
the 12 bit pixel data every rising edge of the “camera clock”. The scaling factor of the
internal PLL and other properties of camera like image resolution and frames per second can

be controlled by FPGA through this block using 12C interface with camera.

RAW2RGB

Since the data coming from camera is in the RGB Bayer Pattern format it has to be converted
to RGB format for further processing. This is implemented by this block. It takes as input the
12 bit raw data coming from CCD CAPTURE block and converts it into 30 bit RGB (10-10-10)

data.

SDRAM CONTROLLER

The camera clock operates at around 77.5 MHz for 640 x 480 image resolution whereas the
VGA display by it defined standard, operates at 25 MHz for displaying 640 x 480 image and
so it's essentially to use frame buffer for storing the image frame. Although the data is
written at much higher frequency as compared to the display & processing frequency no

perceivable information is lost since in a video few consecutive frames are almost the same.

The data coming from camera is stored as a complete frame in SDRAM available on board
before using it for further processing. In the available SDRAM one location can store 16 bits
but since we have 30 bits of data for every pixel, two locations are used for writing data
simultaneously, same is true for reading data from SDRAM. The interface of SDRAM with
FPGA is implemented by the SDRAM CONTROLLER block which supports simultaneously dual

port read and write operations.
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5) COMPUTER VISION ALGORITHM LOGIC BLOCK

Figure 11 shows the custom logic for implementing the feature detector. It consists of two
parallel paths. The first one is the RGB2GRAYSCALE + HARRIS CORNER DETECTOR and
another one is the DELAY PIPELINE. All the subsequent blocks from SDRAM controller’s read

side run at VGA display’s clock.

CV ALGORITHM BLOCK

RGB2 HARRIS Outputsl if corner is detected

CORNER
. GRAYSCALE DETECTOR
pixels
from

SDRAM

DELAY PIPELINE

pixel

Figure 11: CV Algorithm logic block

5.1) RGB2GRAYSCALE

For detecting corners we don’t require any information about individual RGB colors,
grayscale information is sufficient so the Harris Corner Block takes grayscale pixel
values as the input rather than RGB pixels, this avoids processing three separate

color channels which would have required more logic and memory resources.

The block takes RGB pixel every clock cycle and converts it into grayscale using the

below equation.
| = 0.25xR + 0.50xG + 0.25xB

More weight has been given to green pixel because human eyes are more sensitive
to green color and so actually the camera’s CCD sensor contains twice as many

green filters as compared to red and blue filters.
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5.2) HARRIS CORNER DETECTOR

This block implements a pipelined version of Harris Corner Detector, it takes
grayscale pixels every clock cycle as input and generates a 1 bit signal which
indicates whether the current pixel is corner or not. The details about this block are

explained in the next section.

5.3) DELAY PIPELINE

This block simply takes RGB pixel every clock cycle and delays it by number of clock
cycles equal to the pipeline stages in HCD block. Since the HCD block is pipelined it is
essential that the data coming from HCD block which tells whether the input pixel is
a corner or not and the corresponding RGB pixel read from SDRAM which has to be

given to VGA controller are the synchronized.

6) VGA CONTROLLER

The VGA controller implemented inside FPGA takes the data which has to be displayed on
VGA display and generates signals which are required for interfacing the VGA display with

the FPGA via the VGA digital to analog converter IC present on the development board.

Details of Harris Corner Detector Block

Various different hardware architectures have been implemented like [12, 13, 14] for Harris Corner
detectors, generally they can classified to be either based on frame buffers approach or the local

neighborhood approach.

As mentioned previously the Harris Corner Detector consists of 5 sequential steps - gradient
computation, product of gradients calculation, Gaussian smoothing, Harris measure calculation and
NMS. In the frame buffer based approach as implemented in [12] the individual steps are performed

over complete image and the resultant intermediate images are stored in frame buffer(s). Whereas
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in the local neighborhood based approach as implemented in [13] the individual steps are carried
out over only a small neighborhood of pixels which are stored in line buffers. In this work | have
implemented a pipelined architecture based on the local neighborhood approach, as this would

require fewer FGPA resources.

The thesis work first started with the implementation of the hardware architecture of Harris Corner
Detector in Matlab, this allowed easily to make changes in the architecture to improve it in terms of
computation and memory requirements and to find optimal parameters like threshold value for
corners. Also it’s easier to work with images and videos in Matlab. The implementation has been

tested on the image data set available on [4].

Then later on the architecture was implemented in Verilog and tested in Modelsim using images and
finally it was implemented on FPGA to make a complete real time system with a camera and a
display which was the final aim. Since the work carried out is yet to be published the exact details of

the architecture are not mentioned in the description below.

HARRIS CORNER DETECTOR BLOCK

Gaussian
Ix2

Square
of
gradients

Gaussian Harris
Ixy measure

3 row line
buffer

5 row line
buffer

Gaussian
Iy2

Figure 12: Harris Corner Detector block, the input to this block are the sequential grayscale image pixels and the output is a
1bit value which indicates whether the input pixel is a corner or not.
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Figure 12 shows the detailed block diagram of the pipelined Harris Corner Detector which is the

main part of CV algorithm logic block inside FPGA of the system. It consists of the following blocks

1)

5 row line buffer: Sobel operators require neighboring pixels to find image gradient and so
this block stores 5 consecutive grayscale image rows for which Sobel operator has to be
applied. It takes as input a single grayscale 8 bit pixel every VGA clock cycle and outputs the
last pixels of every row to the next block. In the implementation | am finding gradients for 3
pixels in a column simultaneously as shown in Figure 13 which requires 5 x 3 pixel

neighborhood which in turn requires 5 rows of image data at a time.

1o |«
|20 ]+
10 ]+
el 110 | 1
€ ¥ 2| 0|+ =
10|+«
1o ]+
* 2 | o | +2 Ix
5 x 3 pixel
neighborhood Lo+

Sobel X filter

Figure 13: Convolution of Sobel X filter with 5 x 3 pixel neighborhood

Sobel operators: Sobel operators shown in Figure 14 are used for finding gradients in x and y
directions. For a particular image pixel a 3 x 3 neighborhood of image pixels are taken from
line buffer and are convolved with these filters to find gradients. Sobel operators are
discrete version of derivative. The Sobel X filter takes difference of the 3 pixels in top row to
that of 3 pixels in the bottom row to find the gradient for middle pixel of a 3 x 3 pixel region
as shown in Figure 13. It acts as a horizontal edge detector. Similar is the case for Sobel Y

filter.
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-2 0 +2 0 0 0
-1 0 +1 -1 -2 -1
Sobel X filter Sobel Y filter

Figure 14: Sobel filters

3) Square of gradients: It takes as input the image derivatives Ix and ly computed from the

previous blocks and computes

3.1) Ix2 which is pixel wise square of x-gradient
3.2) ly2 which is pixel wise square of y-gradient

3.3) Ixy which is the pixel wise product of x and y gradients

4) Gaussian Smoothing: Three Gaussian smoothing blocks operate in parallel to apply 3 x 3
Gaussian filter shown below in Figure 15 to the square of gradients from previous block, to

generate the elements of matrix M for every image pixel.

1|4 |1
i sl s |4 MV = Sx2  Sxy
16

. | Sxy Sy2

3 x 3 Gaussian
kernel

Figure 15: 3 x 3 Gaussian kernel
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5)

Harris measure: It takes input as the Gaussian smoothened product of image derivatives and
computes it’s Harris measure and compares the Harris measure against a threshold to detect

whether the pixel is a corner or not.

R = (Sx2 * Sy2 — Sxy * Sxy) — k * (Sx2 * Sx2 + Sy2 * Sy2)A2

3 row line buffer: Next block after this which is the non-maximal suppression (NMS) block
requires a 3 x 3 neighboring region whereas the block Harris measure block outputs only one
pixel of data every clock cycle and so a 3 row line buffer is used which stores the Harris

measures of 3 consecutive rows of pixels.

Non maximal suppression (NMS) :This blocks takes the 3 x 3 region of Harris measure values
if the central pixel is detected to be a corner in the previous block then it compares it with
the rest 8 values, and if the central element has highest Harris measure then it considers the
central pixel as a corner either wise not. Essential it removes the nearby falsely detected

corners in proximity to the actual corner.
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Conclusion

Feature detectors are an essential starting step in many computer vision algorithms and so
implementation of good feature detectors is essential. Harris Corner Detector is an accurate feature
detector but it involves multiple intermediate steps which can become a bottle neck for real time

implementation on a low power embedded system.

The worked carried out in this thesis demonstrates the acceleration of Harris Corner Detector on a
FPGA, the implementation use local neighborhood for corner detection thereby avoiding storage of
intermediate image data in memory. HCD architecture has been optimized to use lesser logic and
memory resources thereby enabling a low power and real time embedded vision system. The HCD
architecture developed has been implemented on a FPGA which takes input from connected camera
and display the corner detected video in real time on a VGA display. The bare implementation uses
3,928 / 149,760 which is 3% of the available logic elements, 248,514 / 6,635,520 which is 4% of the
available memory bits and uses 46/760 which is 6% of available 9-bit embedded multipliers on the

FPGA.
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